Himalaya
Constants.hpp
Go to the documentation of this file.
1 // ====================================================================
2 // This file is part of Himalaya.
3 //
4 // Himalaya is licenced under the GNU General Public License (GNU GPL)
5 // version 3.
6 // ====================================================================
7 
8 #pragma once
9 
10 namespace himalaya {
11 namespace {
12 
13 const double Pi = 3.14159265358979324; ///< Pi
14 const double z2 = 1.64493406684822644; ///< Zeta[2] = Pi^2/6
15 const double z3 = 1.20205690315959429; ///< Zeta[3]
16 const double z4 = 1.08232323371113819; ///< Zeta[4] = Pi^4/90
17 const double sqrt2 = 1.41421356237309505; ///< Sqrt[2]
18 const double sqrt3 = 1.73205080756887729; ///< Sqrt[3]
19 const double sqrt15 = 3.87298334620741689; ///< Sqrt[15]
20 const double sqrt35 = 0.774596669241483377; ///< Sqrt[3/5]
21 const double inv_sqrt2 = 0.707106781186547524; ///< 1/Sqrt[2]
22 const double log2 = 0.693147180559945309; ///< Log[2]
23 const double oneLoop = 6.332573977646110963e-03; ///< 1/(4 Pi)^2
24 const double twoLoop = 4.010149318236068752e-05; ///< 1/(4 Pi)^4
25 const double threeLoop = 2.539456721913701978e-07; ///< 1/(4 Pi)^6
26 const double B4 = -1.7628000870737709; ///< -4 Zeta[2] Log[2]^2 + 2/3 Log[2]^4 - 13/2 Zeta[4] + 16 PolyLog[4,1/2]
27 const double D3 = -3.0270094939876520; ///< 6 Zeta[3] - 15/4 Zeta[4] - 6 Im[PolyLog[2, Exp[I Pi/3]]]^2
28 const double DN = 1.1202483970392421; ///< 6 Zeta[3] - 4 Zeta[2] Log[2]^2 + 2/3 Log[2]^4 - 21/2 Zeta[4] + 16 PolyLog[4,1/2]
29 const double OepS2 = 7.8517428364255312; ///< -763/32 - 9 Pi Sqrt[3] Log[3]^2/16 - 35 Pi^3 Sqrt[3]/48 + 195/16 Zeta[2] - 15/4 Zeta[3] + 57/16 Zeta[4] + 45 Sqrt[3]/2 Im[PolyLog[2, Exp[I Pi / 3]]] - 27 Sqrt[3] Im[PolyLog[3, Exp[-I Pi/6]/Sqrt[3]]]
30 const double S2 = 0.26043413763216210; ///< 4 Im[PolyLog[2, Exp[I Pi/3]]]/(9 Sqrt[3])
31 const double T1ep = -24.208928021203593; ///< -45/2 - Pi Sqrt[3] Log[3]^2/8 - 35 Pi^3 Sqrt[3]/216 - 9/2 Zeta[2] + Zeta[3] + 6 Sqrt[3] Im[PolyLog[2, Exp[I Pi/3]]] - 6 Sqrt[3] Im[PolyLog[3, Exp[-I Pi/6]/Sqrt[3]]]
32 
33 } // anonymous namespace
34 } // namespace himalaya
Definition: H3.cpp:14
truncate the two loop expansion at the three loop expansion depth