Himalaya
Functions/Subroutines
Li2.f90 File Reference

Go to the source code of this file.

Functions/Subroutines

double precision function dli2 (x)
 Real dilogarithm $\mathrm{Li}_2(x)$. More...
 
double complex function cdli2 (z)
 Complex dilogarithm $\mathrm{Li}_2(z)$. More...
 
double precision function dhorner (x, c, len)
 Evaluation of polynomial P(x) with len coefficients c. More...
 
double complex function fast_cdlog (z)
 Fast implementation of complex logarithm. More...
 
subroutine li2c (re_in, im_in, re_out, im_out)
 C wrapper for complex dilogarithm. More...
 

Function/Subroutine Documentation

◆ cdli2()

double complex function cdli2 ( double complex  z)

Complex dilogarithm $\mathrm{Li}_2(z)$.

Parameters
zcomplex argument
Returns
$\mathrm{Li}_2(z)$
Note
Implementation translated from SPheno by Alexander Voigt

Definition at line 97 of file Li2.f90.

◆ dhorner()

double precision function dhorner ( double precision  x,
double precision, dimension(len)  c,
integer  len 
)

Evaluation of polynomial P(x) with len coefficients c.

Parameters
xreal argument of P
ccoefficients of P(x)
lennumber of coefficients
Returns
P(x)

Definition at line 180 of file Li2.f90.

◆ dli2()

double precision function dli2 ( double precision  x)

Real dilogarithm $\mathrm{Li}_2(x)$.

Parameters
xreal argument
Returns
$\mathrm{Li}_2(x)$
Author
Alexander Voigt

Implemented as an economized Pade approximation with a maximum error of 4.16e-18.

Definition at line 19 of file Li2.f90.

◆ fast_cdlog()

double complex function fast_cdlog ( double complex  z)

Fast implementation of complex logarithm.

Parameters
zcomplex argument
Returns
log(z)

Definition at line 199 of file Li2.f90.

◆ li2c()

subroutine li2c ( double precision, intent(in)  re_in,
double precision, intent(in)  im_in,
double precision, intent(out)  re_out,
double precision, intent(out)  im_out 
)

C wrapper for complex dilogarithm.

Parameters
re_inreal part of complex input
im_inimaginary part of complex input
re_outreal part of complex output
im_outimagoutary part of complex output
Returns
log(z)

Definition at line 219 of file Li2.f90.